Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates

نویسندگان

  • Hongtu Xie
  • Jianwei Li
  • Bin Zhang
  • Lianfeng Wang
  • Jingkuan Wang
  • Hongbo He
  • Xudong Zhang
چکیده

Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm; 2000-250 μm; 250-53 μm; and <53 μm). The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000-250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area

Glomalin-related soil protein (GRSP), a widespread glycoprotein produced by arbuscular mycorrhizal fungi (AMF), is crucial for ecosystem functioning and ecological restoration. In the present study, an investigation was conducted to comprehensively analyze the effects of heavy metal (HM) contamination on AMF status, soil properties, aggregate distribution and stability, and their correlations a...

متن کامل

Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol

Soil aggregation was studied in a 21-year experiment conducted on an Anthrosol. The soil management regimes consisted of cropland abandonment, bare fallow without vegetation and cropping system. The cropping system was combined with the following nutrient management treatments: control (CONTROL, no nutrient input); nitrogen, phosphorus and potassium (NPK); straw plus NPK (SNPK); and manure (M) ...

متن کامل

Organic matter addition, N, and residue burning effects on infiltration, biological, and physical properties of an intensively tilled silt-loam soil

Seventy years of different management treatments have produced significant differences in runoff, erosion, and ponded infiltration rate in a winter wheat (Triticum aestivum L.)–summer fallow experiment in OR, USA. We tested the hypothesis that differences in infiltration are due to changes in soil structure related to treatment-induced biological changes. All plots received the same tillage (pl...

متن کامل

Soil Aggregate, Organic Matter and Microbial Dynamics under Different Amendments after 27 Years of Mine Soil Development

Physical and biological properties of soils developing from spoil material following surface coal mining in southwest Virginia are poorly understood. Additionally, the effects of various types of soil amendments such as sawdust, topsoil or biosolids on long-term soil development are lacking in the current literature. The objective of this study was to examine water stable aggregation, organic m...

متن کامل

Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi

Arbuscular mycorrhizal fungi (AMF) produce a protein, glomalin, quantified operationally in soils as glomalin-related soil protein (GRSP). GRSP concentrations in soil can range as high as several mg g soil, and GRSP is highly positively correlated with aggregate water stability. Given that AMF are obligate biotrophs (i.e. depending on host cells for their C supply), it is difficult to explain w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015